8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89640 Series

MB89643/645/646/647/P647/PV640

■ DESCRIPTION

The MB89640 series has been developed as a general-purpose version of the F²MC*-8L family consisting of proprietary 8-bit, single-chip microcontrollers.

In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as dual-clock control system, five operating speed control stages, timers, a PWM timer, serial interface, an A/D converter, a D/A converter, an external interrupt, and a watch prescaler.

*: F2MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

• F2MC-8L family CPU core

Instruction set optimized for controllers

Multiplication and division instructions 16-bit arithmetic operations Test and branch instructions Bit manipulation instructions, etc.

(Continued)

■ PACKAGE

(Continued)

· Six types of timers

8-bit PWM timer: 2 channels (also usable reload timer)

8-bit pulse width counter (continuous measurement capable and applicable to remote control)

16-bit timer/counter

21-bit time-base counter

15-bit watch prescaler

• Two 8-bit serial I/O

Swichable transfer direction allows communication with various equipment.

• 8-bit A/D converter: 8 channels

Sense mode function enabling comparison at 12 instructions

Activation by external input capable

- External interrupt 1, external interrupt 2: 9 channels
- 8-bit D/A converter: 2 channels

8-bit R-2R type

- Low-power consumption modes (stop mode, sleep mode, watch mode, subclock mode)
- Bus interface functions

Including hold and ready functions

■ PRODUCT LINEUP

Part number						
Parameter	MB89643 MB89645 MB89646 MB89647				MB89P647	MB89PV640
Classification		Mass produc (mask ROM	One-time PROM product	Piggyback/ evaluation product for evaluation and development		
ROM size	8 K × 8 bits (internal mask ROM)	16 K × 8 bits (internal mask ROM)	24 K × 8 bits (internal mask ROM)	32 K × 8 bits (internal mask ROM)	32 K × 8 bits (internal PROM, programming with general-purpose programmer)	32 K × 8 bits (external ROM)
RAM size	$256 \times 8 \text{ bits}$	512 × 8 bits	768 × 8 bits		1 K \times 8 bits	
CPU functions	Number of instructions: Instruction bit length: Instruction length: Data bit length: Minimum execution time: Interrupt processing time: 136 8 bits 1 to 3 bytes 1, 8, 16 bits 0.4 μs/10 MHz to 6.4 μs/10 MHz, or 61.0 μs/32.768 kHz 3.6 μs/10 MHz to 57.6 μs/10 MHz, or 562.5 μs/32.768 kHz					
Ports	Input ports (CMOS): Output ports (CMOS): I/O ports (CMOS): I/O ports (CMOS): I/O ports (N-ch open-drain): Output ports (N-ch open-drain): Total: 9 (All also serve as a external interrupt.) 8 (All also serve as peripherals, 16 ports also serve as a bus control.) 8 (All also serve as peripherals.) 16 (8 ports also serve as peripherals.) 65					als, ontrol.)
Clock timer		21 bits × 1 (ii	n main clock mo	ode), 15 bits \times 1	(at 32.768 kHz)	
8-bit PWM timer	8-bit reload timer operation \times 2 channels 7/8-bit resolution PWM operation \times 2 channels 8-bit PPG operation \times 1 channel					
8-bit pulse width counter	8-bit timer operation (overflow output capable) 8-bit reload timer operation (toggled output capable) 8-bit pulse width measurement operation (Continuous measurement capable, measurement of "H" width/"L" width/from ↑ to ↓/from ↓ to ↑ capable)					
16-bit timer/ counter	16-bit timer operation 16-bit event counter operation					
8-bit serial I/O	8 bits × 2 channels LSB first/MSB first selectability One clock selectable from four transfer clocks (one external shift clock, three internal shift clocks: 0.8 μs, 3.2 μs, 12.8 μs)					
8-bit A/D converter	8-bit resolution × 8 channels A/D conversion mode (conversion time: 44 instructions) Sense mode (conversion time: 12 instructions) Continuous activation by an external activation or an internal timer capable Reference voltage input					

(Continued)

Part number Parameter	MB89643	MB89645	MB89646	MB89647	MB89P647	MB89PV640	
8-bit D/A converter		8-bit resolution × 2 channels, R-2R type					
External interrupt 1, External interrupt 2		9 channels					
Standby modes		Watch mode, subclock mode, sleep mode, and stop mode					
Process		CMOS					
Operating voltage*1	2.2 V to 6.0 V 2.7 V to 6.0 V					o 6.0 V	
EPROM for use	MBM27C25						

^{*1:} Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89643 MB89645 MB89646 MB89647 MB89P647	MB89PV640
FPT-80P-M11	0	×
FPT-80P-M06	0	×
MQP-80C-P01	×	0

○ : Available ×: Not available

Note: For more information about each package, see section "■ External Dimensions."

■ DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points:

- On the MB89643 register banks 16 to 32 cannot be used.
- On the MB89P647, the program area starts from address 8007_H but on the MB89PV640 and MB89647 starts from 8000_H.

(On the MB89P647, addresses 8000_H to 8006_H comprise the option setting area, option settings can be read by reading these addresses. On the MB89PV640 and MB89647, addresses 8000_H to 8006_H could also be used as a program ROM. However, do not use these addresses in order to maintain compatibility of the MB89P647.)

- The stack area, etc., is set at the upper limit of the RAM.
- The external areas are used.

2. Current Consumption

- In the case of the MB89PV640, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM.
- However, the current consumption in sleep/stop modes is the same. (For more information, see sections
 "■ Electrical Characteristics" and "■ Example Characteristics.")

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.

Before using options check section "■ Mask Options."

Take particular care on the following points:

- A pull-up resistor cannot be set for P40 to P47 and P50 to P57 on the MB89P647.
- For all products, P60 to P67 are available for no pull-up resistor when an A/D converter is used.
- For all products, P50 to P57 are available for no pull-up resistor when a D/A converter is used.
- Options are fixed on the MB89PV640.

■ PIN ASSIGNMENT

• Pin assignment on package top (MB89PV640 only)

Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name
81	N.C.	89	A2	97	N.C.	105	ŌE
82	V _{PP}	90	A1	98	04	106	N.C.
83	A12	91	A0	99	O5	107	A11
84	A7	92	N.C.	100	O6	108	A9
85	A6	93	01	101	07	109	A8
86	A5	94	O2	102	O8	110	A13
87	A4	95	O3	103	CE	111	A14
88	А3	96	Vss	104	A10	112	Vcc

N.C.: Internally connected. Do not use.

■ PIN DESCRIPTION

Pin no.		Circuit				
QFP*1	QFP*2 MQFP*3	Pin name	Circuit type	Function		
11	13	X0	А	Main clock crystal oscillator pins (Max. 10 MHz)		
12	14	X1				
9	11	MOD0	С	Operating mode selection pins		
10	12	MOD1		Connect directly to Vcc or Vss.		
14	16	RST	D	Reset I/O pin This pin is an N-ch open-drain output type with pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L".		
38 to 31	40 to 33	P00/AD0 to P07/AD7	E	General-purpose I/O ports Also serve as multiplex pins of lower address output and data I/O.		
30 to 23	32 to 25	P10/A08 to P17/A15	Е	General-purpose I/O ports Also serve as an upper address output.		
22, 21, 18, 15	24, 23, 20, 17	P20/ <u>BUF</u> C, P21/HAK, P24/CLK, P27/ALE	G	General-purpose output-only ports Also serve as a bus control signal output.		
20, 19	22, 21	P22/HRQ, P23/RDY	Е	General-purpose output-only ports Also serve as a bus control signal input.		
17, 16	19, 18	P25/ <u>WR</u> , P26/RD	Е	General-purpose output-only ports Also serve as a bus control signal output.		
46	48	P30/ADST	F General-purpose I/O port Also serves as an A/D converter external activat port is a hysteresis input type.			
45	47	P31/SCK1	F General-purpose I/O port Also serves as the clock I/O for the serial I/O 1. T is a hysteresis input type.			
44, 43	46, 45	P32/SO1, P33/SI1	F	General-purpose I/O ports Also serve as the data output for the serial I/O 1. These ports are a hysteresis input type.		
42	44	P34/EC	F	General-purpose I/O port Also serves as the external clock input for the 16-bit timer/ counter. This port is a hysteresis input type.		

*1: FPT-80P-M11

*2: FPT-80P-M06

*3: MQP-80C-P01

Pin	no.		Circuit			
QFP*1	QFP*2 MQFP*3	Pin name	type	Function		
41	43	P35/PWC	F	General-purpose I/O port Also serves as the measured pulse input for the 8-bit pulse width counter. This port is a hysteresis input type.		
40	42	P36/WTO	F	General-purpose I/O port Also serves as the toggle output for the 8-bit pulse width counter. This port is a hysteresis input type.		
39	41	P37/PTO1	F	General-purpose I/O port Also serves as the toggle output for the 1-channel PWM timer.		
55, 54, 52 to 47	57, 56, 54 to 49	P40 to P47	L	N-ch medium-voltage open-drain output-only ports		
64	66	P50/DA1	К	N-ch open-drain I/O port Also serves as a D/A channel 1 output. This port is a hysteresis input type.		
63	65	P51/DA2	K	N-ch open-drain I/O port Also serves as a D/A channel 2 output. This port is a hysteresis input type.		
62	64	P52/PWM	Н	N-ch open-drain I/O port Also serves as the PWM output by the two PWM timers. This port is a hysteresis input type.		
61	63	P53/PTO2	Н	N-ch open-drain I/O port Also serves as the toggle output for the 2-channel PWM timer. This port is a hysteresis input type.		
60	62	P54/BZ	Н	N-ch open-drain I/O port Also serves as a buzzer output. This port is a hysteresis input type.		
59	61	P55/SCK2	Н	N-ch open-drain I/O port Also serves as the clock I/O for the serial I/O 2. This port is a hysteresis input type.		
58	60	P56/SO2	Н	N-ch open-drain I/O port Also serves as the data output for the serial I/O 2. This port is a hysteresis input type.		
57	59	P57/SI2	Н	N-ch open-drain I/O port Also serves as the data input for the serial I/O 2. This p is a hysteresis input type.		
77 to 70	79 to 72	P60/AN0 to P67/AN7	I	N-ch open-drain output-only ports Also serve as the analog input for the A/D converter. These ports are a hysteresis input type.		
2, 1, 80 to 78	4 to 1, 80	P70/LI0 to P74/LI4	J	Input-only ports Also serve as external interrupt 1 input. These ports are a hysteresis input type.		

^{*1:} FPT-80P-M11

^{*2:} FPT-80P-M06

^{*3:} MQP-80C-P01

(Continued)

Pin	no.		Circuit				
QFP*1	QFP*2 MQFP*3	Pin name	Circuit type	Function			
7	9	X0A	В	Subclock oscillator pins (32.768 kHz)			
8	10	X1A					
53	55	Vcc		Power supply pin			
13, 56	15, 58	Vss	_	Power supply (GND) pin			
66	68	AVcc	_	A/D converter power supply pin Use this pin at the same voltage as Vcc.			
67, 68	69, 70	AVRH, AVRL		A/D converter reference voltage input pins			
65	67	DAVC	_	D/A converter power supply pin Use this pin at the same voltage as Vcc.			
69	71	AVss	_	Analog circuit power supply pin Use this pin at the same voltage as Vss.			
3 to 6	5 to 8	P83/INT3 to P80/INT0	J	Input-only ports Also serve as an external interrupt 2 input. These ports are a hysteresis input type.			

*1: FPT-80P-M11 *2: FPT-80P-M06 *3: MQP-80C-P01

• External EPROM pins (MB89PV640 only)

Pin no.	Pin name	I/O	Function
82	V _{PP}	0	"H" level output pin
83 84 85 86 87 88 89 90	A12 A7 A6 A5 A4 A3 A2 A1 A0	0	Address output pins
93 94 95	O1 O2 O3	I	Data input pins
96	Vss	0	Power supply (GND) pin
98 99 100 101 102	O4 O5 O6 O7 O8	I	Data input pins
103	CE	0	ROM chip enable pin Outputs "H" during standby.
104	A10	0	Address output pin
105	ŌĒ	0	ROM output enable pin Outputs "L" at all times.
107 108 109	A11 A9 A8	0	Address output pins
110	A13	0	
111	A14	0	
112	Vcc	0	EPROM power supply pin
81 92 97 106	N.C.	_	Internally connected pins Be sure to leave them open.

■ I/O CIRCUIT TYPE

(Continued)

Type	Circuit	Remarks
F	P-ch P-ch N-ch	CMOS output Hysteresis input Pull-up resistor optional
G	R P-ch N-ch	CMOS output Pull-up resistor optional
Н	R P-ch N-ch	 N-ch open-drain output Hysteresis input Pull-up resistor optional
I	P-ch N-ch	N-ch open-drain output Analog input
	Analog input	Pull-up resistor optional
J	+WR R	Hysteresis input
		Pull-up resistor optional

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{CC} or lower than V_{SS} is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between V_{CC} and V_{SS}.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also, take care to prevent the analog power supply (AVcc and AVRH) and analog input from exceeding the digital power supply (Vcc) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be AVcc = DAVC = Vcc and AVss = AVRH = Vss even if the A/D and D/A converters are not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

5. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

■ PROGRAMMING TO THE EPROM ON THE MB89P647

The MB89P647 is an OTPROM version of the MB89640 series.

1. Features

- 32-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in each mode such as 32-Kbyte PROM, option area is diagrammed below.

Precautions

- (1) The program area of the MB89P647 is 7 bytes smaller than that of the MB89PV640 and MB89647 to provide an option area. Note this point during program development.
- (2) During normal operation, the option data is read when the option area is read from the CPU.

3. Programming to the EPROM

In EPROM mode, the MB89P647 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

• Programming procedure

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0007H to 7FFFH (note that addresses 8007H to FFFFH while operating as internal ROM mode assign to 0007H to 7FFFH in EPROM mode). Load option data into addresses 0000H to 0006H of the EPROM programmer. (For information about each corresponding option, see "7. Setting OTPROM Options.")
- (3) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
FPT-80P-M06	ROM-80QF-28DP-8L2
FPT-80P-M11	ROM-80QF2-28DP-8L

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

Note: Depending on the EPROM programmer, inserting a capacitor of about 0.1 μ F between V_{PP} and V_{SS} or V_{CC} and V_{SS} can stabilize programming operations.

7. Setting OTPROM Options

The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map:

• OTPROM option bit map

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Vacancy	Vacancy	Vacancy	Single/dual- clock system	Reset pin output	Power-on reset	Oscillation stabilization time	
0000н	Readable and writable	Readable and writable	Readable and writable	1: Dual clock 2: Single clock	1: Yes 2: No	1: Yes 2: No	00: 2 ⁴ /Fсн 01: 2 ¹⁷ /Fсн	10: 2 ¹⁴ /Fсн 11: 2 ¹⁸ /Fсн
0001н	P07 Pull-up 1: No 0: Yes	P06 Pull-up 1: No 0: Yes	P05 Pull-up 1: No 0: Yes	P04 Pull-up 1: No 0: Yes	P03 Pull-up 1: No 0: Yes	P02 Pull-up 1: No 0: Yes	P01 Pull-up 1: No 0: Yes	P00 Pull-up 1: No 0: Yes
0002н	P17 Pull-up 1: No 0: Yes	P16 Pull-up 1: No 0: Yes	P15 Pull-up 1: No 0: Yes	P14 Pull-up 1: No 0: Yes	P13 Pull-up 1: No 0: Yes	P12 Pull-up 1: No 0: Yes	P11 Pull-up 1: No 0: Yes	P10 Pull-up 1: No 0: Yes
0003н	P37 Pull-up 1: No 0: Yes	P36 Pull-up 1: No 0: Yes	P35 Pull-up 1: No 0: Yes	P34 Pull-up 1: No 0: Yes	P33 Pull-up 1: No 0: Yes	P32 Pull-up 1: No 0: Yes	P31 Pull-up 1: No 0: Yes	P30 Pull-up 1: No 0: Yes
0004н	P67 Pull-up 1: No 0: Yes	P66 Pull-up 1: No 0: Yes	P65 Pull-up 1: No 0: Yes	P64 Pull-up 1: No 0: Yes	P63 Pull-up 1: No 0: Yes	P62 Pull-up 1: No 0: Yes	P61 Pull-up 1: No 0: Yes	P60 Pull-up 1: No 0: Yes
0005н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P74 Pull-up 1: No 0: Yes	P73 Pull-up 1: No 0: Yes	P72 Pull-up 1: No 0: Yes	P71 Pull-up 1: No 0: Yes	P70 Pull-up 1: No 0: Yes
0006н	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P83 Pull-up 1: No 0: Yes	P82 Pull-up 1: No 0: Yes	P81 Pull-up 1: No 0: Yes	P80 Pull-up 1: No 0: Yes

Notes: • Set each bit to 1 to erase.

• Do not write 0 to the vacant bit.

The read value of the vacant bit is 1, unless 0 is written to it.

■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TV

2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adapter socket part number
LCC-32 (Rectangle)	ROM-32LC-28DP-YG

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

3. Memory Space

Memory space in each mode, such as 32-Kbyte PROM is diagrammed below.

4. Programming to the EPROM

- (1) Set the EPROM programmer to the MBM27C256A.
- (2) Load program data into the EPROM programmer at 0007_H to 7FFF_H.
- (3) Program to 0000H to 7FFFH with the EPROM programmer.

■ BLOCK DIAGRAM

■ CPU CORE

1. Memory Space

The microcontrollers of the MB89640 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89640 series is structured as illustrated below.

Note: Since addresses 8000_H to 8006_H for the MB89P647 comprise an option area, do not use this area for the MB89PV640 and MB89647.

2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions

Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the

instruction is an 8-bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator

When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification

Extra pointer (EP): A 16-bit pointer for indicating a memory address

Stack pointer (SP): A 16-bit register for indicating a stack area

Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	IL0	Interrupt level	High-low
0	0	1	High
0	1	I	†
1	0	2	
1	1	3	Low = no interrupt

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0.

Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise.

V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: An 8-bit register for storing data

The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers. Up to a total of 16 banks can be used on the MB89643 and a total of 32 banks can be used on the MB89645/646/647/P647/PV640. The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size.

■ I/O MAP

Address	Read/write	Register name	Register description	
00н	(R/W)	PDR0	Port 0 data register	
01н	(W)	DDR0	Port 0 data direction register	
02н	(R/W)	PDR1	Port 1 data register	
03н	(W)	DDR1	Port 1 data direction register	
04н	(R/W)	PDR2	Port 2 data register	
05н	(W)	BCTR	External bus control register	
06н			Vacancy	
07н	(R/W)	SYCC	System clock control register	
08н	(R/W)	STBC	Standby control register	
09н	(R/W)	WDTC	Watchdog timer control register	
0Ан	(R/W)	TBCR	Time-base timer control register	
0Вн	(R/W)	WPCR	Watch prescaler control register	
0Сн	(R/W)	PDR3	Port 3 data register	
0Дн	(W)	DDR3	Port 3 data direction register	
0Ен	(R/W)	PDR4	Port 4 data register	
0Fн	(R/W)	BUZR	Buzzer register	
10н	(R/W)	PDR5	Port 5 data register	
11н	(R/W)	PDR6	Port 6 data register	
12н	(R)	PDR7	Port 7 data register	
13н	(R)	PDR8	Port 8 data register	
14н			Vacancy	
15н			Vacancy	
16н			Vacancy	
17н			Vacancy	
18н	(R/W)	TMCR	16-bit timer control register	
19н	(R/W)	TCHR	16-bit timer count register (H)	
1Ан	(R/W)	TCLR	16-bit timer count register (L)	
1Вн		1	Vacancy	
1Сн	(R/W)	SMR1	Serial 1 mode register	
1Dн	(R/W)	SDR1	Serial 1 data register	
1Ен	(R/W)	SMR2	Serial 2 mode register	
1Fн	(R/W)	SDR2	Serial 2 data register	

(Continued)

Address	Read/write	Register name	Register description
20н	(R/W)	ADC1	A/D converter control register 1
21н	(R/W)	ADC2	A/D converter control register 2
22н	(R/W)	ADCD	A/D converter data register
23н			Vacancy
24н	(R/W)	DACR	D/A converter control register
25н	(W)	DADR1	D/A converter data register 1
26н	(W)	DADR2	D/A converter data register 2
27н			Vacancy
28н	(R/W)	CNTR1	PWM timer control register 1
29н	(R/W)	CNTR2	PWM timer control register 2
2Ан	(R/W)	CNTR3	PWM timer control register 3
2Вн	(W)	COMR1	PWM timer compare register 1
2Сн	(W)	COMR2	PWM timer compare register 2
2Dн	(R/W)	PCR1	PWC pulse width control register 1
2Ен	(R/W)	PCR2	PWC pulse width control register 2
2Fн	(R/W)	RLBR	PWC reload buffer register
30н			Vacancy
31н	(R/W)	EIC1	External interrupt 1 control register 1
32н	(R/W)	EIC2	External interrupt 1 control register 2
33н	(R/W)	EIE2	External interrupt 2 enable register
34н	(R/W)	EIF2	External interrupt 2 flag register
35н to 7Ан			Vacancy
7Вн			Vacancy
7Сн	(W)	ILR1	Interrupt level setting register 1
7Dн	(W)	ILR2	Interrupt level setting register 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7Fн			Vacancy

Note: Do not use vacancies.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Dovernator	Cumbal	Va	lue	l lmi4	Domorko
Parameter	Symbol	Min.	Max.	Unit	Remarks
Power supply voltage	Vcc AVcc DAVC	Vss-0.3	Vss + 7.0	V	*
A/D converter reference input voltage	AVRH	Vss - 0.3	Vss + 7.0	V	AVRH must not exceed AVcc + 0.3 V.
voltage	AVRL	Vss - 0.3	Vss + 7.0	V	AVRL must not exceed AVRH.
Program voltage	V _{PP}	Vss-0.3	13.0	V	MOD1 pin on MB89P647
Input voltage	Vı	Vss - 0.3	Vcc + 0.3	V	P52 to P57 with a pull-up resistor and other input ports
input voitage	V ₁₂	Vss - 0.3	Vss + 7.0	V	P52 to P57 without a pull-up resistor
	Vo	Vss-0.3	Vcc + 0.3	V	P40 to P47 and P52 to P57 with a pull-up resistor and other output ports
Output voltage	V _{O2}	Vss-0.3	Vss + 17.0	V	P40 to P47 without a pull-up resistor
	Vоз	Vss - 0.3	Vss + 7.0	V	P52 to P57 without a pull-up resistor
"L" level maximum output current	Іоь	_	20	mA	
"L" level average output current	Iolav		4	mA	Average value (operating current × operating rate)
"L" level total average output current	ΣIOLAV	_	40	mA	Average value (operating current × operating rate)
"L" level total maximum output current	ΣloL	_	100	mA	
"H" level maximum output current	Іон		-20	mA	
"H" level average output current	Іонач	_	-4	mA	Average value (operating current × operating rate)
"H" level total average output current	ΣΙομαν	_	-20	mA	Average value (operating current × operating rate)
"H" level total maximum output current	∑Іон	_	-50	mA	
Power consumption	PD	_	500	mW	

(Continued)

(AVss = Vss = 0.0 V)

Parameter	Symbol	Value		Unit	Remarks
Farameter	Syllibol	Min.	Max.	Oilit	Kemarks
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	- 55	+150	°C	

^{*:} Use DAVC and AVcc and Vcc set at the same voltage.

Take care so that DAVC and AVcc does not exceed Vcc, such as when power is turned on.

Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
Parameter	Syllibol	Min.	Max.	Oilit	Remarks
	Vcc	2.2*	6.0*	V	Normal operation assurance range* (MB89643/645/646/647)
Power supply voltage	AVcc DAVC	2.7*	6.0*	V	Normal operation assurance range* (MB89P647/PV640)
		1.5	6.0	V	Retains the RAM state in stop mode
A/D converter reference input	AVRH	3.0	AVcc	V	
voltage	AVRL	0.0	2.0	V	
Operating temperature	TA	-40	+85	°C	

^{*:} These values vary with the operating frequency and analog assurance range. See Figure 1, "5. A/D Converter Electrical Characteristics," and "6. D/A Converter Electrical Characteristics."

Figure 1 Operating Voltage vs. Main Clock Operating Frequency

Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/Fch.

Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.

3. DC Characteristics

 $(AVcc = DAVC = Vcc = +5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, FcH = 10 \text{ MHz}, FcL = 32.768 \text{ kHz}, TA = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

·		AVC = Vcc = +5.0 V, AVs			Value			
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
	Vін	P00 to P07, P10 to P17, P22, P23		0.7 Vcc		Vcc + 0.3	V	
"H" level input	Vihs	RST, P30 to P37, P50, P51, P70 to P74, P80 to P83		0.8 Vcc	_	Vcc + 0.3	V	
voltage*1		P52 to P57						With pull-up resistor
	V _{IHS2}	P52 to P57		0.8 Vcc		Vss + 6.0	V	Without pull- up resistor
"I" lovel input	VIL	P00 to P07, P10 to P17, P22, P23		Vss - 0.3		0.3 Vcc	V	
"L" level input voltage ^{*1}	VILS	RST, P30 to P37, P50 to P57, P70 to P74, P80 to P83		Vss-0.3	_	0.2 Vcc	V	
	VD	P40 to P47		Vss - 0.3	_	Vss + 15.0	V	Without pull- up resistor
Open-drain output pin application	V _{D2}	P52 to P57		Vss - 0.3		Vss + 6.0	V	Without pull- up resistor
voltage	V _{D3}	P60 to P67 P40 to P47, P52 to P57		Vss - 0.3	_	Vcc + 0.3	V	With pull-up resistor
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P27, P30 to P37	Iон = −2.0 mA	2.4	_	_	V	
"L" level output voltage	Vol	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67	IoL = +1.8 mA	_	_	0.4	V	
	V _{OL2}	RST	IoL = +4.0 mA	_	_	0.4	V	
Input leakage current (Hi-z output leakage current)	ILI1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P74, P80 to P83, MOD0, MOD1	0.45 V < Vı < Vcc	_	_	±5	μА	Without pull- up resistor

 $(AVcc = DAVC = Vcc = +5.0 \text{ V}, AVss = Vss = 0.0 \text{ V}, Fch = 10 \text{ MHz}, Fcl = 32.768 \text{ kHz}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Pin	Condition		Value		Unit	Remarks	
Parameter	Symbol	FIII	Condition	Min.	Тур.	Max.	Oilit	Remarks	
Pull-up resistance	RPULL	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P64, P70 to P74, P80 to P83, RST	Vı = 0.0 V	25	50	100	kΩ	Without pull- up resistor	
			Vcc = +5.0 V	_	10	20	mA		
	Icc1		 Main clock operation High speed*2 	_	11	23	mA	MB89P647 only	
			Vcc = +3.0 V	_	1.5	2	mA		
	Icc2		 Main clock operation Low speed*3 	_	2.5	5	mA	MB89P647 only	
Power supply	Ics ₁			Vcc = +5.0 V • Main clock sleep • High speed ²	_	3	7	mA	
current	lcs ₂	Vcc	Vcc = +3.0 V • Main clock sleep • Low speed*3		1	1.5	mA		
	lcs3		Vcc = +3.0 V Subclock sleep	1	25	50	μΑ		
	Іссн		T _A = +25°C Subclock stop	_	_	10	μА		
			Vcc = +3.0 V		50	100	μΑ		
	Ісѕв		Subclock operation (32.768 kHz)	_	1	3	mA	MB89P647 only	
Power supply	Ісст	Vcc	Vcc = +3.0 V Watch mode (32.768 kHz)	_	_	15	μΑ		
current	IA	AVcc	 Main clock operation High speed*2 	_	1	3	mA		
Input capacitance	Cin	Other than AVcc, AVss, Vcc, and Vss	f = 1 MHz	_	10	_	pF		

^{*1:} Connect MOD0 and MOD1 to Vcc or Vss.

^{*2:} High-speed operation is the operation when the system clock is set to the maximum speed by the system clock select bit at 10-MHz clock.

^{*3:} Low-speed operation is the operation when the system clock is set to the maximum speed by the system clock select bit at 10-MHz clock.

4. AC Characteristics

(1) Reset Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Condition	Valu	ne	Unit	Remarks
Farameter	Syllibol	Condition	Min.	Max.	Offic	Remarks
RST "L" pulse width	t zlzh	_	48 txcyl	_	ns	

^{*:} txcyL is the oscillation cycle (1/FcH) to input to the X0 pin.

(2) Power-on Reset

 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Condition	Val	ue	Unit	Remarks	
rarameter	Syllibol	Condition	Min.	Max.	Oiiit	itemarks	
Power supply rising time	t R		_	50	ms		
Power supply cut-off time	t off		1	_	ms	Due to repeated operation	

Note: Make sure that power supply rises within the selected oscillation stabilization time.

For example, when the main clock is operating at 10 MHz (FcH) and the oscillation stabilization time select option has been set to 2¹⁴/FcH, the oscillation stabilization delay time is 1.6 ms and accordingly the maximum value of power supply rising time is about 1.6 ms.

Keep in mind that abrupt changes in power supply voltage may cause a power-on reset. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

(3) Clock Timing

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin Condition		Value			Unit	Remarks
Farameter	Syllibol	FIII	Condition	Min.	Тур.	Max.	Oilit	Remarks
Clock frequency	Fсн	X0, X1		1	_	10	MHz	
Clock frequency	FcL	X0A, X1A		_	32.768		kHz	
Clock cycle time	txcyL	X0, X1		100	_	1000	ns	
Clock cycle time	t LXCYL	X0A, X1A		_	30.5		μs	
Input clock pulse width	Pwh PwL	X0	_	20	_	_	ns	External clock
input clock pulse width	P _{WHL} P _{WLL}	X0A		_	30.5	_	μs	
Input clock rising/falling time	tcr tcr	X0		_	_	10	ns	External clock

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
		4/FcH system clock selection 11	μs	$t_{\text{inst}} = 0.4 \mu \text{s}$ when operating at $F_{\text{CH}} = 10 \text{MHz}$
Instruction cycle	tinst	8/FcH system clock selection 10	μs	$t_{\text{inst}} = 0.8 \mu \text{s}$ when operating at $F_{\text{CH}} = 10 \text{MHz}$
(minimum execution time)		16/Fcн system clock selection 01		$t_{inst} = 1.6 \mu s$ when operating at $F_{CH} = 10 MHz$
		64/Fcн system clock selection 00	μs	$t_{\text{inst}} = 6.4 \mu \text{s}$ when operating at $F_{\text{CH}} = 10 \text{MHz}$

(5) Recommended Resonator Manufacturers

Sample Application of Piezoelectric Resonator (FAR series)

FAR part number (built-in capacitor type)	Frequency	Initial deviation of FAR frequency (T _A = +25°C)	Temperature characteristic of FAR frequency (T _A = -20°C to +60°C)		
FAR-C4CB-08000-M02	8.00 MHz	±0.5%	±0.5%		
FAR-C4CB-10000-M02	10.00 MHz	±0.5%	±0.5%		

Inquiry: FUJITSU LIMITED

Sample Application of Ceramic Resonator

Resonator manufacturer*	Resonator	Frequency	C1 (pF)	C2 (pF)	R (k Ω)
Kyocera Corporation	KBR-7.68MWS	7.68 MHz	33	33	_
Ryocera Corporation	KBR-8.0MWS	8.0 MHz	33	33	
Murata Mfg. Co., Ltd.	CSA8.00MTZ	8.0 MHz	30	30	

Inquiry: Kyocera Corporation

AVX Corporation

North American Sales Headquarters: TEL 1-803-448-9411

AVX Limited

European Sales Headquarters: TEL 44-1252-770000

• AVX/Kyocera H.K. Ltd.

Asian Sales Headquarters: TEL 852-363-3303

Murata Mfg. Co., Ltd.

- Murata Electronics North America, Inc.: TEL 1-404-436-1300
- Murata Europe Management GmbH: TEL 49-911-66870
- Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233

(6) Clock Output Timing

 $(Vcc = +5.0 V\pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.	Ollic	Remarks
Cycle time	tcyc	CLK		200	_	ns	txcyL × 2 at 10 MHz oscillation
$CLK \uparrow \to CLK \downarrow$	t CHCL	CLK		30	100	ns	Approx. tcyl/2 at 10 MHz oscillation

(7) Bus Read Timing

(Vcc = +5.0 V±10%, FcH = 10 MHz, AVss = Vss = 0.0 V, TA = -40° C to +85°C)

Parameter	Symbol	Pin	Condition	Value	!	Unit	Remarks
Parameter	Symbol	FIII	Condition	Min.	Max.	Offic	Remarks
Valid address $ ightarrow \overline{RD} \downarrow time$	t avrl	RD, A15 to 08, AD7 to 0		1/4 t _{inst} * – 64 ns	_	ns	
RD pulse width	t rlrh	RD		1/2 t _{inst} * – 20 ns	_	ns	
Valid address → read data time	tavdv	AD7 to 0, A15 to 08		1/2 t _{inst} *	200	ns	No wait
$\overline{RD} \downarrow \to read \ data \ time$	tRLDV	RD, AD7 to 0		1/2 t _{inst} * – 80 ns	120	ns	No wait
$\overline{RD} \uparrow \to data \; hold \; time$	t RHDX	AD7 to 0, RD		0	_	ns	
$\overline{RD} \uparrow \to ALE \uparrow time$	t RHLH	RD, ALE		1/4 t _{inst} * – 40 ns	_	ns	
$\overline{RD} \uparrow \to address$ invalid time	t RHAX	RD, A15 to 08		1/4 t _{inst} * - 40 ns	_	ns	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	RD, CLK		1/4 t _{inst} * - 40 ns	_	ns	
$CLK \downarrow \to \overline{RD} \uparrow time$	t CLRH	RD, CLK		0	_	ns	
$\overline{RD} \downarrow \to BUFC \downarrow time$	t RLBL	RD, BUFC		- 5	_	ns	
BUFC ↑→ Valid address time	t BHAV	A15 to 08, AD7 to 0, BUFC		5	_	ns	

^{*:} For information on tinst, see "(4) Instruction Cycle."

(8) Bus Write Timing

 $(Vcc = +5.0 V \pm 10\%, FcH = 10 MHz, AVss = Vss = 0.0 V, TA = -40°C to +85°C)$

Darameter	Symbol	Din	Condition	Value	·	l lmi4	Remarks	
Parameter	Symbol	Pin	Condition	Min.	Max.	Unit	Nemarks	
Valid address $ ightarrow$ ALE \downarrow time	tavll	AD7 to 0, ALE, A15 to 08		1/4 t _{inst} *1 – 64 ns*2	_	ns		
ALE \downarrow \rightarrow address invalid time	tLLAX	AD7 to 0, ALE, A15 to 08		5	_	ns	*2	
Valid address \rightarrow $\overline{\text{WR}}$ ↓ time	t avwl	WR, ALE		1/4 t _{inst*1} – 60 ns	_	ns		
WR pulse width	twlwh	WR		1/2 t _{inst*1} – 20 ns	_	ns		
Write data \rightarrow WR \uparrow time	tovwh	AD7 to 0, WR		1/2 t _{inst} *1 – 60 ns	_	ns		
$\overline{ m WR} \uparrow ightarrow$ address invalid time	twhax	WR, A15 to 08		1/4 t _{inst} *1 – 40 ns	_	ns		
$\overline{ m WR} \uparrow ightarrow$ data hold time	twhox	AD7 to 0, WR		1/4 t _{inst} *1 – 40 ns	_	ns		
$\overline{WR} \uparrow \to ALE \uparrow time$	twhlh	WR, ALE		1/4 t _{inst} *1 – 40 ns	_	ns		
$\overline{WR} \downarrow \to CLK \uparrow time$	twlch	WR, CLK		1/4 t _{inst} *1 – 40 ns	_	ns		
$CLK \downarrow \to \overline{WR} \uparrow time$	tclwh	WR, CLK		0	_	ns		
ALE pulse width	t LHLL	ALE		1/4 t _{inst} *1 - 35 ns*2	_	ns		
ALE $\downarrow \rightarrow$ CLK \uparrow time	t LLCH	ALE, CLK		1/4 t _{inst} *1 - 30 ns*2	_	ns		

^{*1:} For information on t_{inst}, see "(4) Instruction Cycle."

^{*2:} These characteristics are also applicable to the bus read timing.

(9) Ready Input Timing

 $(Vcc = +5.0 V \pm 10\%, Fch = 10 MHz, AVss = Vss = 0.0 V, T_A = -40°C to +85°C)$

Parameter	Symbol Pin Condition		Va	lue	Unit	Remarks	
Farameter	Symbol	FIII	Condition	Min.	Max.	Oill	Nemarks
RDY valid \rightarrow CLK \uparrow time	tуvcн	RDY, CLK		60	_	ns	*
$CLK \uparrow \to RDY$ invalid time	t chyx	RDY, CLK		0	_	ns	*

^{*:} These characteristics are also applicable to the read cycle.

(10) Serial I/O Timing

 $(V_{CC} = +5.0 \text{ V} \pm 10\%, F_{CH} = 10 \text{ MHz}, AV_{SS} = V_{SS} = 0.0 \text{ V}, T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Doromotor	Symbol	Pin	Condition	Val	lue	Unit	Remarks
Parameter	Symbol	FIII	Condition	Min.	Max.	Offic	Remarks
Serial clock cycle time	tscyc	SCK1, SCK2		2 tinst*	_	μs	
$\begin{array}{c} \text{SCK1} \downarrow \rightarrow \text{SO1 time} \\ \text{SCK2} \downarrow \rightarrow \text{SO2 time} \end{array}$	tsLov	SCK1, SO1 SCK2, SO2	Internal objet	-200	200	ns	
Valid SI1 \rightarrow SCK1 \uparrow Valid SI2 \rightarrow SCK2 \uparrow	tıvsh	SI1, SCK1 SI2, SCK2	Internal shift clock mode	1/2 tinst*	_	μs	
$\begin{array}{c} \text{SCK1} \uparrow \rightarrow \text{valid SI1 hold time} \\ \text{SCK2} \uparrow \rightarrow \text{valid SI2 hold time} \end{array}$	tsнıx	SCK1, SI1 SCK2, SI2		1/2 tinst*	_	μs	
Serial clock "H" pulse width	tshsl	SCK1, SCK2		1 tinst*		μs	
Serial clock "L" pulse width	t slsh	SCK1, SCK2		1 tinst*	_	μs	
$\begin{array}{c} \text{SCK1} \downarrow \rightarrow \text{SO1 time} \\ \text{SCK2} \downarrow \rightarrow \text{SO2 time} \end{array}$	tsLov	SCK1, SO1 SCK2, SO2	External shift	0	200	ns	
Valid SI1 \rightarrow SCK1 \uparrow Valid SI2 \rightarrow SCK2 \uparrow	tıvsh	SI1, SCK1 SI2, SCK2	clock mode	1/2 t _{inst} *	_	μs	
$\begin{array}{c} \text{SCK1} \uparrow \rightarrow \text{valid SI1 hold time} \\ \text{SCK2} \uparrow \rightarrow \text{valid SI2 hold time} \end{array}$	t shix	SCK1, SI1 SCK2, SI2		1/2 tinst*	_	μs	

^{*:} For information on tinst, see "(4) Instruction Cycle."

(11) Peripheral Input Timing

 $(Vcc = +5.0 V \pm 10\%, FcH = 10 MHz, AVss = Vss = 0.0 V, TA = -40°C to +85°C)$

Doromotor	Symbol	Pin	Condition	Va	lue	Unit	Remarks
Parameter	Symbol	FIII	Condition	Min.	Max.	Offic	Remarks
Peripheral input pulse "H" width 1	t _{ILIH1}	PWC, EC, INT0 to INT3		2 tinst*	_	μs	
Peripheral input pulse "L" width 1	t _{IHIL1}	PWC, EC, INT0 to INT3	_	2 tinst*	_	μs	
Peripheral input pulse "H" width 2	t _{ILIH2}	ADST	A/D mode	32 tinst*	_	μs	
Peripheral input pulse "L" width 2	t _{IHIL2}	ADST	Arbinode	32 tinst*	_	μs	
Peripheral input pulse "H" width 2	t _{ILIH2}	ADST	Sense mode	8 tinst*	_	μs	
Peripheral input pulse "L" width 2	t _{IHIL2}	ADST	Sense mode	8 tinst*	_	μs	

*: For information on tinst, see "(4) Instruction Cycle."

5. A/D Converter Electrical Characteristics

 $(AVcc = Vcc = +3.5 \text{ V to } +6.0 \text{ V}, FcH = 10 \text{ MHz}, AVss = Vss = AVRL = 0.0 \text{ V}, TA = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Banamatan			.5 V to +6.0 V,		Value			•
Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit	Remarks
Resolution			_	_	_	8	bit	
Total error				_	_	±3.0	LSB	
Linearity error	<u> </u>		AVRH = AVcc	_	_	±1.0	LSB	
Differential linearity error				_	_	±0.9	LSB	
Zero transition voltage	Vот			-1.0	+0.5	+2.0	LSB	
Full-scale transition voltage	V _{FST}	_		AVRH – 4.5	AVRH – 1.5	AVRH + 1.5	LSB	
Interchannel disparity				_	_	0.5	LSB	
A/D mode conversion time	_			_	44	_	tinst*	
Sense mode conversion time				_	12	_	tinst*	
Analog port input current	Iain	AN0 to	_	_	_	10	μΑ	
Analog input voltage	_	AN7		0	_	AVRH	V	
Reference voltage	_			0	_	AVcc	V	
Reference voltage supply current	IR	AVRH	When A/D conversion is activated AVRH = 5.0 V	_	100	_	μΑ	
	Ігн		When A/D conversion is stopped AVRH = 5.0 V		_	1	μΑ	

^{*:} For information on tinst, see "(4) Instruction Cycle."

(1) A/D Glossary

Resolution

Analog changes that are identifiable with the A/D converter. When the number of bits is 8, analog voltage can be divided into $2^8 = 256$.

• Linearity error (unit: LSB)

The deviation of the straight line connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("1111 1111" \leftrightarrow "1111 1110") from actual conversion characteristics

- Differential linearity error (unit: LSB)
 The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value
- Total error (unit: LSB)

The difference between theoretical and actual conversion values

(2) Precautions

• Input impedance of the analog input pins

The A/D converter used for the MB89640 series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.

For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below $10 \text{ k}\Omega$).

Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about 0.1 μF for the analog input pin.

• Error

The smaller the | AVRH – AVRL |, the greater the error would become relatively.

6. D/A Converter Electrical Characteristics

(DAVC = Vcc = +3.5 V to +6.0 V, FcH=10 MHz, AVss = Vss = 0.0 V, TA = -40°C to +85°C)

Parameter	Symbol		Value	Unit	Remarks	
Farameter	Syllibol	Min.	Тур.	Max.	Offic	Remarks
Resolution		_	_	8	bit	
Linearity error		_	_	±1.0	LSB	DAVC = Vcc = 5.0 V
Differential linearity error		_	_	±0.9	LSB	DAVC = VCC = 5.0 V
Output impedance		_	20	_	kΩ	
D/A analog power supply current (for one channel)	Idina	_	0.1	_	mA	At no load and conversion cycle of 5 μs
	IDINS	_	0.1	_	μΑ	During power down

■ EXAMPLES CHARACTERISTICS

- (1) "L" Level Output Voltage (P00 to P07, P10 P60 to P67)
- to P17, P20 to P27, P30 to P37, P50 to P57,

(2) "H" Level Output Voltage (P00 to P07, P10 to P17, P20 to P27, P30 to P37)

- (3) "L" Level Output Voltage (P40 to P47)
- Vol vs. lol Vol (mV) 1500 TA = +25°C 1400 1300 Vcc = 5 V 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IoL (mA)

(4) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)

(5) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

(6) Power Supply Current (External Clock)

(Continued)

(Continued)

(7) Pull-up Resistance

■ INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.

Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
#vct	Vector table number (3 bits)
#d8	Immediate data (8 bits)
#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
А	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
Т	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

(Continued)

Symbol	Meaning
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i = 0 to 7)
×	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((×))	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic: Assembler notation of an instruction

~: Number of instructions

#: Number of bytes

Operation: Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in

the column indicate the following:

• "-" indicates no change.

• dH is the 8 upper bits of operation description data.

AL and AH must become the contents of AL and AH immediately before the instruction

is executed.

• 00 becomes 00.

N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column,

the relevant instruction will change its corresponding flag.

OP code: Code of an instruction. If an instruction is more than one code, it is written according to

the following rule:

Example: 48 to 4F \leftarrow This indicates 48, 49, ... 4F.

 Table 2
 Transfer Instructions (48 instructions)

Mnemonic	~	#	Operation	TL	TH	АН	NZVC	OP code
MOV dir,A	3	2	$(dir) \leftarrow (A)$	ı	ı	_		45
MOV @IX +off,A	4	2	$((IX) + off) \leftarrow (A)$	_	_	_		46
MOV ext,A	4	3	$(ext) \leftarrow (A)$	_	_	_		61
MOV @EP,A	3	1	((EP)) ← (A)	_	_	_		47
MOV Ri,A	3	1	$(Ri) \leftarrow (A)$	_	_	_		48 to 4F
MOV A,#d8	2	2	(A) ← d8	AL	_	_	++	04
MOV A,dir	3	2	$(A) \leftarrow (dir)$	AL	_	_	++	05
MOV A,@IX +off	4	2	$(A) \leftarrow ((IX) + off)$	AL	_	_	++	06
MOV A,ext	4	3	$(A) \leftarrow (ext)$	AL	_	_	++	60
MOV A,@A	3	1	$(A) \leftarrow ((A))$	AL	_	_	++	92
MOV A,@EP	3	1	$(A) \leftarrow ((EP))$	AL	_	_	++	07
MOV A,Ri	3	1	$(A) \leftarrow (Ri)$	AL	_	_	++	08 to 0F
MOV dir,#d8	4	3	(dír) ← d8	_	_	_		85
MOV @IX +off,#d8	5	3	$((IX) + off) \leftarrow d8$	_	_	_		86
MOV @EP,#d8	4	2	((EP)) ← d8	_	_	_		87
MOV Ri,#d8	4	2	(Ri) ← d8	_	_	_		88 to 8F
MOVW dir,A	4	2	$(dir) \leftarrow (AH), (dir + 1) \leftarrow (AL)$	_	_	_		D5
MOVW @IX +off,A	5	2	$((IX) + off) \leftarrow (AH),$	_	_	_		D6
	_	_	$((IX) + off + 1) \leftarrow (AL)$					
MOVW ext,A	5	3	$(ext) \leftarrow (AH), (ext + 1) \leftarrow (AL)$	_	_	_		D4
MOVW @EP,A	4	1	$((EP)) \leftarrow (AH), ((EP) + 1) \leftarrow (AL)$	_	_	_		D7
MOVW EP,A	2	1	$(EP) \leftarrow (A)$	_	_	_		E3
MOVW A,#d16	3	3	(A) ← d16	AL	АН	dH	++	E4
MOVW A,dir	4	2	$(AH) \leftarrow (dir), (AL) \leftarrow (dir + 1)$	AL	ΑH	dH	++	C5
MOVW A,@IX +off	5	2	$(AH) \leftarrow ((IX) + off),$	AL	AH	dH	++	C6
100000000000000000000000000000000000000		_	$(AL) \leftarrow ((IX) + off + 1)$	/ \L	7 (1 1	ai i		00
MOVW A,ext	5	3	$(AH) \leftarrow ((IX) \mid OH \mid T)$ $(AH) \leftarrow (ext), (AL) \leftarrow (ext + 1)$	AL	АН	dH	++	C4
MOVW A,@A	4	1	$(AH) \leftarrow (CAC), (AL) \leftarrow (CAC)$ $(AH) \leftarrow (AH) \leftarrow$	AL	AH	dH	<u> </u>	93
MOVW A, @EP	4	1	$(AH) \leftarrow ((A)), (AL) \leftarrow ((A)) + 1)$ $(AH) \leftarrow ((EP)), (AL) \leftarrow ((EP) + 1)$	AL	AH	dH	· ·	C7
MOVW A, @ LF	2	1	$(A) \leftarrow (EP)$	_	_	dH		F3
MOVW A,E1	3	3	(EP) ← d16	_	_			E7
MOVW IX,A	2	1	$(IX) \leftarrow (A)$	-	-			E2
MOVW IX,A	2	1	$(IX) \leftarrow (IX)$ $(A) \leftarrow (IX)$	_	_	dH		F2
MOVW A,IA	2	1	$(SP) \leftarrow (IA)$	_	_	_		E1
MOVW SP,A	2	1			_	dH		F1
MOV @A,T	3	1	$(A) \leftarrow (SP)$	_	-	uп _		82
	4		$((A)) \leftarrow (T)$	_	_	_		
MOVW @A,T		1	$((A)) \leftarrow (TH), ((A) + 1) \leftarrow (TL)$	_	_	_		83
MOVW IX,#d16	3	3	$(IX) \leftarrow d16$	_	_	— -		E6
MOVW A,PS	2	1	$(A) \leftarrow (PS)$	_	_	dH		70
MOVW PS,A	2	1	(PS) ← (A)	_	_	_	++++	71
MOVW SP,#d16	3	3	(SP) ← d16	_	_	_		E5
SWAP	2	1	$(AH) \leftrightarrow (AL)$	_	_	AL		10
SETB dir: b	4	2	(dir): b \leftarrow 1	_	_	_		A8 to AF
CLRB dir: b	4	2	(dir): b \leftarrow 0	_	_	_		A0 to A7
XCH A,T	2	1	$(AL) \leftrightarrow (TL)$	AL	_			42
XCHW A,T	3	1	$(A) \leftrightarrow (T)$	AL	AH	dH		43
XCHW A,EP	3	1	$(A) \leftrightarrow (EP)$	_	_	dH		F7
XCHW A,IX	3	1	$(A) \leftrightarrow (IX)$	_	_	dH		F6
XCHW A,SP	3	1	$(A) \leftrightarrow (SP)$	_	_	dH		F5
MOVW A,PC	2	1	(A) ← (PC)	_	_	dH		F0

<sup>Notes: • During byte transfer to A, T ← A is restricted to low bytes.
• Operands in more than one operand instruction must be stored in the order in which their mnemonics</sup> are written. (Reverse arrangement of F²MC-8 family)

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(A) \leftarrow (A) + (Ri) + C$	-	_	_	++++	28 to 2F
ADDC A,#d8	2	2	$(A) \leftarrow (A) + d8 + C$	_	_	_	++++	24
ADDC A,dir	3	2	$(A) \leftarrow (A) + (dir) + C$	_	_	_	++++	25
ADDC A,@IX +off	4	2	$(A) \leftarrow (A) + ((IX) + off) + C$	_	_	_	++++	26
ADDC A,@EP	3	1	$(A) \leftarrow (A) + ((EP)) + C$	_	_		++++	27
ADDCW A	3	1	$(A) \leftarrow (A) + (T) + C$	_	_	dH	++++	23
ADDC A	2	1	$(AL) \leftarrow (AL) + (TL) + C$	_	_	_	++++	22 20 to 25
SUBC A #d0	3 2	1 2	$(A) \leftarrow (A) - (Ri) - C$	_	_	_	++++	38 to 3F 34
SUBC A,#d8 SUBC A,dir	3	2	$(A) \leftarrow (A) - d8 - C$	_	_	_	++++	35
SUBC A,@IX +off	4	2	$(A) \leftarrow (A) - (dir) - C$ $(A) \leftarrow (A) - ((IX) + off) - C$	_	_	_	++++	36
SUBC A,@EP	3	1	$(A) \leftarrow (A) - ((A) + O(A) - C$ $(A) \leftarrow (A) - ((EP)) - C$	_	_	_	++++	37
SUBCW A	3	1	$(A) \leftarrow (A) - ((LF)) - C$ $(A) \leftarrow (T) - (A) - C$		_	dH	++++	33
SUBC A	2	1	$(A) \leftarrow (1) - (A) - C$ $(AL) \leftarrow (TL) - (AL) - C$	_	_	—	++++	32
INC Ri	4	1	$(Ri) \leftarrow (Ri) + 1$	_	_	_	+++-	C8 to CF
INCW EP	3	1	$(EP) \leftarrow (EP) + 1$	_	_	_		C3
INCW IX	3	1	$(IX) \leftarrow (IX) + 1$	_	_	_		C2
INCW A	3	1	$(A) \leftarrow (A) + 1$	_	_	dH	++	C0
DEC Ri	4	1	$(Ri) \leftarrow (Ri) - 1$	_	_	_	+++-	D8 to DF
DECW EP	3	1	(EP) ← (EP) – 1	_	_	_		D3
DECW IX	3	1	$(IX) \leftarrow (IX) - 1$	_	_	_		D2
DECW A	3	1	$(A) \leftarrow (A) - 1$	_	_	dH	++	D0
MULU A	19	1	$(A) \leftarrow (AL) \times (TL)$	_	_	dH		01
DIVU A	21	1	$(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$	dL	00	00		11
ANDW A	3	1	$(A) \leftarrow (A) \land (T)$	_	_	dH	+ + R –	63
ORW A	3	1	$(A) \leftarrow (A) \lor (T)$	_	_	dH	+ + R –	73
XORW A	3	1	$(A) \leftarrow (A) \ \forall \ (T)$	_	_	dH	++R-	53
CMP A	2	1	(TL) – (AL)	_	_	_	++++	12
CMPW A	3	1	(T) – (A)	_	_	_	++++	13
RORC A	2	1	\rightarrow C \rightarrow A \frown	-	_	_	++-+	03
ROLC A	2	1	$C \leftarrow A \leftarrow$	-	_	_	++-+	02
CMP A,#d8	2	2	(A) – d8	_	_	_	++++	14
CMP A,dir	3	2	(A) – (dir)	_	_	_	++++	15
CMP A,@EP	3	1	(A) – ((EP))	_	_	_	++++	17
CMP A,@IX +off	4	2	(A) - ((IX) + off)	_	_	_	++++	16
CMP A,Ri	3	1	(A) – (Ri)	_	_	_	++++	18 to 1F
DAA	2	1	Decimal adjust for addition	_	_	_	++++	84
DAS	2	1	Decimal adjust for subtraction	_	_	_	++++	94
XOR A	2	1	$(A) \leftarrow (AL) \ \forall \ (TL)$	_	_	_	+ + R –	52
XOR A,#d8	2	2	$(A) \leftarrow (AL) \ \forall \ d8$	_	_	_	+ + R -	54
XOR A,dir	3	2	$(A) \leftarrow (AL) \ \forall \ (dir)$	_	_	_	++R-	55
XOR A,@EP	3	1	$(A) \leftarrow (AL) \forall ((EP))$	_	_	_	+ + R -	57
XOR A,@IX +off	4	2	$(A) \leftarrow (AL) \ \forall \ (IX) + off)$	_	_	_	++R-	56
XOR A,Ri	3	1	$(A) \leftarrow (AL) \ \forall \ (Ri)$ $(A) \leftarrow (AL) \land (TL)$	_	_	_	++R-	58 to 5F
AND A #40	2	1	$(A) \leftarrow (AL) \wedge (TL)$ $(A) \leftarrow (AL) \wedge d8$	_	_	_	++R-	62
AND A dir	2	2	$(A) \leftarrow (AL) \land d8$ $(A) \leftarrow (AL) \land (dir)$	_	_	_	++R-	64
AND A,dir	3	2	$(\Lambda) \leftarrow (\Lambda L) \wedge (UII)$	-	_	_	+ + R –	65

(Continued)

(Continued)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(A) \leftarrow (AL) \land ((EP))$	-	-	_	+ + R –	67
AND A,@IX +off	4	2	$(A) \leftarrow (AL) \land ((IX) + off)$	_	_	_	+ + R –	66
AND A,Ri	3	1	$(A) \leftarrow (AL) \land (Ri)$	_	_	_	+ + R –	68 to 6F
OR A	2	1	$(A) \leftarrow (AL) \lor (TL)$	_	_	_	+ + R -	72
OR A,#d8	2	2	$(A) \leftarrow (AL) \lor d8$	_	_	_	+ + R -	74
OR A,dir	3	2	$(A) \leftarrow (AL) \lor (dir)$	_	_	_	+ + R –	75
OR A,@EP	3	1	$(A) \leftarrow (AL) \lor ((EP))$	_	_	_	+ + R -	77
OR A,@IX +off	4	2	$(A) \leftarrow (AL) \lor ((IX) + off)$	_	_	_	+ + R –	76
OR A,Ri	3	1	$(A) \leftarrow (AL) \lor (Ri)$	_	_	_	+ + R –	78 to 7F
CMP dir,#d8	5	3	(dir) – d8	_	_	_	++++	95
CMP @EP,#d8	4	2	((EP)) – d8	_	_	_	++++	97
CMP @IX +off,#d8	5	3	((IX) + off) - d8	_	_	_	++++	96
CMP Ri,#d8	4	2	(Ri) – d8	_	_	_	++++	98 to 9F
INCW SP	3	1	(SP) ← (SP) + 1	_	_	_		C1
DECW SP	3	1	$(SP) \leftarrow (SP) - 1$	ı	ı	1		D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $Z = 1$ then $PC \leftarrow PC + rel$	_	_	_		FD
BNZ/BNE rel	3	2	If $Z = 0$ then $PC \leftarrow PC + rel$	_	_	_		FC
BC/BLO rel	3	2	If $C = 1$ then $PC \leftarrow PC + rel$	_	_	_		F9
BNC/BHS rel	3	2	If $C = 0$ then $PC \leftarrow PC + rel$	_	_	_		F8
BN rel	3	2	If N = 1 then PC \leftarrow PC + rel	_	_	_		FB
BP rel	3	2	If N = 0 then PC \leftarrow PC + rel	_	_	_		FA
BLT rel	3	2	If $V \forall N = 1$ then $PC \leftarrow PC + rel$	_	_	_		FF
BGE rel	3	2	If $V \forall N = 0$ then $PC \leftarrow PC + rel$	_	_	_		FE
BBC dir: b,rel	5	3	If (dir: b) = 0 then $PC \leftarrow PC + rel$	_	_	_	-+	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) = 1 then $PC \leftarrow PC + rel$	_	_	_	-+	B8 to BF
JMP @A	2	1	(PC) ← (A)	_	_	_		E0
JMP ext	3	3	(PC) ← ext	_	_	_		21
CALLV #vct	6	1	Vector call	_	_	_		E8 to EF
CALL ext	6	3	Subroutine call	_	_	_		31
XCHW A,PC	3	1	$(PC) \leftarrow (A), (A) \leftarrow (PC) + 1$	_	_	dΗ		F4
RET	4	1	Return from subrountine	_	_	_		20
RETI	6	1	Return form interrupt	_	_	_	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	~	#	Operation	TL	TH	AH	NZVC	OP code
PUSHW A	4	1		_	_	_		40
POPW A	4	1		_	_	dΗ		50
PUSHW IX	4	1		_	_	_		41
POPW IX	4	1		_	_	_		51
NOP	1	1		_	_	_		00
CLRC	1	1		_	_	_	R	81
SETC	1	1		_	_	_	S	91
CLRI	1	1		_	_	_		80
SETI	1	1		_	_	_		90

■ INSTRUCTION MAP

	. ()	. 0	. ×	. 0	O	n	×	n	<u>ē</u>	<u>e</u>	<u>_</u>	ē	<u>e</u>	ē	<u>e</u>	<u>e</u>
4	MOVW A,PC	MOVW A,SP	MOWW A,IX	MOVW A,EP	XCHW A,PC	XCHW A,SP	XCHW A,IX	XCHW A,EP	BNC	BC	BP re	BN	BNZ	BZ re	BGE	BLT re
Е	JMP @A	MOVW SP,A	MOVW IX,A	MOVW EP,A	MOVW A,#d16	MOVW SP,#d16	MOVW IX,#d16	MOVW EP,#d16	CALLV #0	CALLV #1	CALLV #2	CALLV #3	CALLV #4	CALLV #5	CALLV #6	CALLV #7
D	DECW A	DECW SP	DECW	DECW	MOVW ext,A	MOVW dir,A	MOVW @IX +d,A	MOVW @EP,A	DEC R0	DEC R1	DEC R2	DEC R3	DEC R4	DEC R5	DEC R6	DEC R7
С	INCW A	INCW SP	INCW	INCW	MOVW A,ext	MOVW A,dir	MOVW A,@IX +d	MOVW A,@EP	INC R0	INC R1	INC R2	INC R3	INC R4	INC R5	INC R6	INC R7
В	BBC dir: 0,rel	BBC dir: 1,rel	BBC dir: 2,rel	BBC dir: 3,rel	BBC dir: 4,rel	BBC dir: 5,rel	BBC dir: 6,rel	BBC dir: 7,rel	BBS dir: 0,rel	BBS dir: 1,rel	BBS dir: 2,rel	BBS dir: 3,rel	BBS dir: 4,rel	BBS dir: 5,rel	BBS dir: 6,rel	BBS dir: 7,rel
А	CLRB dir: 0	CLRB dir: 1	CLRB dir: 2	CLRB dir: 3	CLRB dir: 4	CLRB dir: 5	CLRB dir: 6	CLRB dir: 7	SETB dir: 0	SETB dir: 1	SETB dir: 2	SETB dir: 3	SETB dir: 4	SETB dir: 5	SETB dir: 6	SETB dir: 7
6	SETI	SETC	MOV A,@A	MOVW A,@A	DAS	CMP dir,#d8	CMP @IX +d,#d8	CMP @EP;#d8	CMP R0,#d8	CMP R1,#d8	CMP R2,#d8	CMP R3,#d8	CMP R4,#d8	CMP R5,#d8	CMP R6,#d8	CMP R7,#d8
8	CLRI	CLRC	MOV @A,T	MOVW @A,T	DAA	MOV dir,#d8	MOV @IX+d,#d8	MOV @EP;#d8	MOV R0,#d8	MOV R1,#d8	MOV R2,#d8	MOV R3,#d8	MOV R4,#d8	MOV R5,#d8	MOV R6,#d8	MOV R7,#d8
7	MOVW A,PS	MOVW PS,A	OR A	ORW A	OR A,#d8	OR A,dir	OR A,@IX +d	OR A,@EP	OR A,R0	OR A,R1	OR A,R2	OR A,R3	OR A,R4	OR A,R5	OR A,R6	OR A,R7
9	MOV A,ext	MOV ext,A	AND	ANDW	AND A,#d8	AND A,dir	AND A,@IX +d	AND A,@EP	AND A,R0	AND A,R1	AND A,R2	AND A,R3	AND A,R4	AND A,R5	AND A,R6	AND A,R7
5	POPW A	POPW IX	XOR A	XORW A	XOR A,#d8	XOR A,dir	XOR A,@IX +d	XOR A,@EP	XOR A,R0	XOR A,R1	XOR A,R2	XOR A,R3	XOR A,R4	XOR A,R5	XOR A,R6	XOR A,R7
4	PUSHW A	WHSU4 XI	XCH A, T	XCHW A, T		MOV dir,A	MOV @IX +d,A	MOV @EP,A	MOV R0,A	MOV R1,A	MOV R2,A	MOV R3,A	MOV R4,A	MOV R5,A	MOV R6,A	MOV R7,A
3	RETI	CALL addr16	SUBC	SUBCW	SUBC A,#d8	SUBC A,dir	SUBC A,@IX +d	SUBC A,@EP	SUBC A,R0	SUBC A,R1	SUBC A,R2	SUBC A,R3	SUBC A,R4	SUBC A,R5	SUBC A,R6	SUBC A,R7
2	RET	JMP addr16	ADDC	ADDCW	ADDC A,#d8	ADDC A,dir	ADDC A,@IX+d	ADDC A,@EP	ADDC A,R0	ADDC A,R1	ADDC A,R2	ADDC A,R3	ADDC A,R4	ADDC A,R5	ADDC A,R6	ADDC A,R7
1	SWAP	DIVU A	CMP A	CMPW	CMP A,#d8	CMP A,dir	CMP A,@IX+d	CMP A,@EP	CMP A,R0	CMP A,R1	CMP A,R2	CMP A,R3	CMP A,R4	CMP A,R5	CMP A,R6	CMP A,R7
0	MOP	AULU A	ROLC A	RORC	MOV A,#d8	MOV A,dir	MOV A,@IX +d	MOV A,@EP	MOV A,R0	MOV A,R1	MOV A,R2	MOV A,R3	MOV A,R4	MOV A,R5	MOV A,R6	MOV A,R7
LH	0	-	2		4	2	9	7	8	6	4	Ф	ပ	Ο	Ш	F

■ MASK OPTIONS

No.	Part number	MB89643 MB89645 MB89646 MB89647	MB89P647	MB89PV640 Setting not possible	
	Specifying procedure	Specify when ordering masking	Set with EPROM programmer		
1	Pull-up resistors P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P74, P80 to P83	Selectable per pin (P60 to P67 must be set to without a pull-up resistor when an A/D converter is used. P51 and P50 are must be set to without a pull-up resistor when a D/A converter is used.)	Can be set per pin (Only P40 to P47 and P50 to P57 are without a pull- up resistor.)	Fixed to without pull-up resistor	
2	Power-on reset With power-on reset Without power-on reset	Selectable	Setting possible	Fixed to with power-on reset	
3	Main clock oscillation stabilization time selection (when operating at 10 MHz) Approx. 2 ¹⁸ /FcH (Approx. 26.2 ms) Approx. 2 ¹⁷ /FcH (Approx. 13.1 ms) Approx. 2 ¹⁴ /FcH (Approx. 1.6 ms) Approx. 2 ⁴ /FcH (Approx. 0 ms) FcH: Main clock frequency	Selectable	Setting possible	Fixed to approx. 2 ¹⁸ /F _{CH} (Approx. 26.2 ms)	
4	Reset pin output With reset output Without reset output	Selectable	Setting possible	Fixed to with reset output	
5	Selection either single- or dual-clock system Single clock Dual clock	Selectable	Setting possible	Fixed to dual- clock system	

■ ORDERING INFORMATION

Part number	Package	Remarks
MB89647PFM MB89646PFM MB89645PFM MB89643PFM MB89P647PFM	80-pin Plastic QFP (FPT-80P-M11)	
MB89647PF MB89646PF MB89645PF MB89643PF MB89P647PF	80-pin Plastic QFP (FPT-80P-M06)	
MB89PV640CF	80-pin Ceramic MQFP (MQP-80C-P01)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan Tel: +81-44-754-3763

Fax: +81-44-754-3329 http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.

Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,

D-63303 Dreieich-Buchschlag,

Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741

Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu, Seoul 135-280 Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0005

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.